Web-based calibration:

Instructions on how to standardize your scoring for this study of Ki67 assessment on TMA cores.

On the calibration website:

- Please use the pattern & number of nuclei shown at left.
- Please sequentially score
 every definite invasive
 cancer nucleus in the search
 area. The website contains
 H&E images to assist you.
- <shift> click = Ki67 <u>positive</u> brown cancer nucleus (gets tagged <u>red</u>)
- <ctrl> click = Ki67 <u>negative</u>
 blue cancer nucleus (gets tagged green)
- Please do NOT score in clumps or clusters. This does not mean to avoid clumps or clusters of cells, but rather to score across them in a "typewriter" pattern.

H&E images of each core are provided on the website, at the top of the webpage (see below).

You may find it helpful to keep the H&E image open while you score the core.

If you do this right, the final image will look something like this ...

This, on the other hand, is an example of <u>not</u> following the rules ... Scoring in clumps and clusters leads to higher interobserver variability, away from the calibration value.

What counts as "positive"?

"Positive" = **Any** definite brown staining in the nucleus of an invasive breast cancer cell, above the surrounding background in cytoplasm and extracellular matrix.

Example images of positive and negative follow.

Examples of range of staining levels that should be considered **POSITIVE** (red squares) for Ki67 (unmarked & marked side by side)

Examples of range of staining levels that should be considered **NEGATIVE** (green circles) for Ki67 (unmarked & marked side by side)

Do not score DCIS.

Contact information

If you have any questions or difficulties, please contact Sam Leung at:

Phone: +1-604-875-4111 x62649 (Pacific Time)

or

Email: Samuel.Leung@vch.ca

Thank you.